Design Optimisation of Fixed and Adaptive Shading Devices on Four Façade Orientations of a High-Rise Office Building in the Tropics

Author:

Mangkuto Rizki A.ORCID,Koerniawan Mochamad DonnyORCID,Apriliyanthi Sri Rahma,Lubis Irma Handayani,Atthaillah ORCID,Hensen Jan L. M.ORCID,Paramita BetaORCID

Abstract

Optimisation of shading devices in buildings is a broadly investigated topic; however, most studies only focus on a single façade orientation, since the observed buildings are typically located in high latitude regions. However, in tropical regions, optimisation of all façade orientations is required due to the relatively high solar radiation and long sunshine duration. While adaptive shading devices are a promising solution, they are not without disadvantages, and as such a combination of adaptive shading devices and a fixed shading device shall be considered. This research therefore aims to design the optimum internal shading devices on four façade orientations of a high-rise office building in a tropical city, considering fixed and adaptive shading design options, and to determine the impact on annual daylight performance using computational modelling and simulation. The simulation is carried out under: (1) fixed design option, focusing on the numbers and width of slats; and (2) adaptive design option, focusing on the slat angle on various conditions. It is found that both sDA300/50% and ASE1000,250 are only influenced by the orientation. Under the fixed design option, the sDA300/50% and ASE1000,250 targets can be achieved only on the north and south façades, and accordingly the adaptive design option shall be implemented on the east and west façades. Overall, this study contributes to knowledge regarding the optimisation of shading devices in high-rise buildings in the tropics, considering the daylight admission from the four cardinal orientations.

Funder

Ministry of Education and Culture

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3