Parametric Optimization and Decision Support Model Framework for Life Cycle Cost Analysis and Life Cycle Assessment of Flexible Industrial Building Structures Integrating Production Planning

Author:

Reisinger JuliaORCID,Kugler Stefan,Kovacic Iva,Knoll Maximilian

Abstract

Most industrial buildings have a very short lifespan due to frequently changing production processes. The load-bearing structure severely limits the flexibility of industrial buildings and is a major contributor to their costs, carbon footprint and waste. This paper presents a parametric optimization and decision support (POD) model framework that enables automated structural analysis and simultaneous calculation of life cycle cost (LCC), life cycle assessment (LCA), recycling potential and flexibility assessment. A method for integrating production planning into early structural design extends the framework to consider the impact of changing production processes on the footprint of building structures already at an early design stage. With the introduction of a novel grading system, design teams can quickly compare the performance of different building variants to improve decision making. The POD model framework is tested by means of a variant study on a pilot project from a food and hygiene production facility. The results demonstrate the effectiveness of the framework for identifying potential economic and environmental savings, specifying alternative building materials, and finding low-impact industrial structures and enclosure variants. When comparing the examined building variants, significant differences in the LCC (63%), global warming potential (62%) and flexibility (55%) of the structural designs were identified. In future research, a multi-objective optimization algorithm will be implemented to automate the design search and thus improve the decision-making process.

Funder

Austrian Research Promotion Agency

TU Wien

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3