Influence of Complex Service Factors on Ravelling Resistance Performance for Porous Asphalt Pavements

Author:

Cheng Zhihao123,Zheng Shaopeng23,Liang Naixing1,Li Xiao23ORCID,Li Libin2

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. Broadvision Engineering Consultants, Kunming 650000, China

3. Yunnan Key Laboratory of Digital Communications, Kunming 650000, China

Abstract

The study aims to analyze the influence of complex service factors on ravelling resistance performance for large-void asphalt pavements by carrying out tests on environmental and vehicle factors, conducting ultraviolet aging, freeze–thaw cycles, as well as vehicle speed simulated tests with the Rotating Surface Abrasion Test, vehicle tests, and traffic volume tests, and by making a correlation analysis between the Cantabro Abrasion test and Rotating Surface Abrasion Test. The result shows that environmental factors significantly affect the ravelling resistance performance of drainage asphalt pavements. With the increase in the times of UV aging and freeze–thaw cycles, the ravelling loss rate of asphalt specimens shows a tendency to increase, and the combined test of UV aging and freeze–thaw cycles aggravated the ravelling damage of asphalt specimens. Meanwhile, vehicle factors have a significant attenuation effect on the ravelling resistance performance of drainage asphalt pavements. With the increase in the speed, pressure, and times of the Rotating Surface Abrasion, the ravelling loss rate of asphalt specimens shows a steady tendency to increase. Furthermore, there exists a good correlation between the Rotating Surface Abrasion speed, pressure, times, and the ravelling loss rate. Finally, the two test results of the Cantabro Abrasion test and Rotating Surface Abrasion test are consistent in their changes during single/composite factor analysis, confirming the feasibility of using the Rotating Surface Abrasion test index to characterize the change in the ravelling resistance performance of drainage asphalt pavements.

Funder

Science and Technology Innovation Project of Yunnan Communications Investment and Construction Group Co., Ltd.

Yunnan Key Laboratory of Digital Communications

Science and Technology Innovation and Demonstration Project of Yunnan Provincial Department of Transportation

Independent Science and Technology Project of Yunnan Traffic Planning Design Research Institute Co., Ltd

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3