Abstract
The linear curve distribution of the beam and the asymmetrical layout of the stay cables may have beneficial or adverse influences on cable-stayed bridges. Sectional model wind tunnel tests and numerical simulations were used to analyze the influence of these two factors on the wind-induced vibration characteristics of a curved beam unilateral stayed bridges (CBUSB) and the interaction between its stay cables and curved beams. According to the basic similarity law, the sectional models of a CBUSB example were designed and manufactured. The aerodynamic force and wind-induced vibration of the models were measured in an atmospheric boundary wind tunnel laboratory to obtain the aerodynamic coefficient and displacement, respectively. Based on the wind tunnel test results, the verified finite element model was used to determine the displacement, acceleration, and cable tension of the CBUSB excited by the buffeting force under 5 curvature cases and 4 cable layout cases. Then, band-pass filter technology and fast Fourier transform technology were used to analyze the influence of these two parameters on the wind-induced vibration characteristics of the CBUSB. Results show that the CBUSB had good aerodynamic stability in the wind tunnel at low and high wind speeds. With increasing curvature, the high-order modal vibration and modal coupling vibration of the CBUSB may be generated. The frequency, the proportion of wind-induced vibration response components, and the distribution characteristics of spectrum energy of CBUSB will be affected by 4 cable layout schemes. Cables arranged on both sides of the bridge and near the center of curvature can improve pedestrian comfort and reduce wind-induced vibration, respectively. Affected by the interaction between cable and bridge, the cable and bridge transmit their own vibration to each other, both of which contain the response components of each other.
Funder
Science and Technology Research Program of Chongqing Municipal Education Commission
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献