Sectional Model Wind Tunnel Test and Research on the Wind-Induced Vibration Response of a Curved Beam Unilateral Stayed Bridge

Author:

Zhao ShuangORCID,Chen Jiahao,Yue Jiahao,Yan Zhitao,Liu Jun,Zhang Bin,Chen Jianfeng

Abstract

The linear curve distribution of the beam and the asymmetrical layout of the stay cables may have beneficial or adverse influences on cable-stayed bridges. Sectional model wind tunnel tests and numerical simulations were used to analyze the influence of these two factors on the wind-induced vibration characteristics of a curved beam unilateral stayed bridges (CBUSB) and the interaction between its stay cables and curved beams. According to the basic similarity law, the sectional models of a CBUSB example were designed and manufactured. The aerodynamic force and wind-induced vibration of the models were measured in an atmospheric boundary wind tunnel laboratory to obtain the aerodynamic coefficient and displacement, respectively. Based on the wind tunnel test results, the verified finite element model was used to determine the displacement, acceleration, and cable tension of the CBUSB excited by the buffeting force under 5 curvature cases and 4 cable layout cases. Then, band-pass filter technology and fast Fourier transform technology were used to analyze the influence of these two parameters on the wind-induced vibration characteristics of the CBUSB. Results show that the CBUSB had good aerodynamic stability in the wind tunnel at low and high wind speeds. With increasing curvature, the high-order modal vibration and modal coupling vibration of the CBUSB may be generated. The frequency, the proportion of wind-induced vibration response components, and the distribution characteristics of spectrum energy of CBUSB will be affected by 4 cable layout schemes. Cables arranged on both sides of the bridge and near the center of curvature can improve pedestrian comfort and reduce wind-induced vibration, respectively. Affected by the interaction between cable and bridge, the cable and bridge transmit their own vibration to each other, both of which contain the response components of each other.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3