Seismic Upgrading of Existing Steel Buildings Built on Soft Soil Using Passive Damping Systems

Author:

Ahmadi Masoud1ORCID,Ebadi-Jamkhaneh Mehdi2ORCID

Affiliation:

1. Department of Civil Engineering, Ayatollah Boroujerdi University, Boroujerd 6919969737, Iran

2. School of Engineering, Damghan University, Damghan 3671641167, Iran

Abstract

In regions prone to seismic activity, buildings constructed on soft soil pose a significant concern due to their inferior seismic performance. This situation often results in considerable structural damage, substantial economic loss, and increased risk to human life. To address this problem, this study focuses on the seismic retrofitting of steel moment-resisting frames using friction and metal-yielding dampers, taking into account the soil-structure interaction. The effectiveness of these retrofit methods was examined through a comprehensive non-linear time history analysis of three prototype structures subjected to a series of intense seismic events. The soil behavior was simulated using a non-linear Bouc-Wen hysteresis model. Various parameters, including lateral displacement, maximum drift ratio, the pattern of plastic hinge formation, base shear distribution, and dissipated hysteretic energy, were used to compare the performance of the two retrofit strategies. The findings from the non-linear analyses revealed that both retrofit methods markedly enhanced the safety and serviceability of the deficient buildings. The retrofitted structures exhibited notable reductions in residual displacements and inter-story drift compared to the original frame structures. In the original frame, primary structural elements absorbed a significant amount of the seismic input energy through deformation. However, in the retrofitted frames, dampers dissipated up to 90% of the total input energy. Additionally, integrating dampers into the original frames effectively transferred the non-linear response of the structural elements to the dampers.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3