Abstract
Steady-state methods have been widely used in Europe to analyse the energy performance of low-energy buildings. The accuracy of such methods depends on the assumptions regarding the compensation of non-stationary effects, but also on the input design data, such as the temperature of unconditioned spaces (UnSp). This temperature depends mainly on the thermal characteristics of UnSp envelope, air ventilation rate, temperature of the conditioned spaces and the external environment. External environment varies over time, daily and seasonally, making it difficult to accurately estimate UnSp temperature. European Union (EU) directives stated that the UnSp temperature can be evaluated by the adjustment factor (b) set by EN ISO 13789. However, each Member State may adjust procedures, by proposing simplified approaches, either for new or existing buildings. In this paper the b-values measured on-site in three dwellings were compared to those calculated by EN ISO 13789 as well as those estimated based on simplified procedures, allowed in the regulatory framework of some EU Member States, namely Ireland, Portugal, Spain, France and Italy. The study allowed to conclude that EN ISO 13789 and Irish BR 443 provided similar values. However, if the purpose is to simplify procedures and reduce computation effort, French RE2020 proved to be very effective. The thermal characteristics of the UnSp envelope and air ventilation rate were identified as the parameters that most affect the estimation of the b-value, while thermal losses through linear thermal bridges and the ground do not seem to have a significant impact.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Reference31 articles.
1. Secretary-General’s Statement on the Conclusion of the UN Climate Change Conference COP26 on 13 November 2021https://www.un.org/sg/en/node/260645
2. Energy Performance Certification of Buildings—A Policy Tool to Improve Energy Efficiencyhttps://www.iea.org/publications/freepublications/publication/buildings_certification.pdf
3. A simple methodology to predict heating load at an early design stage of dwellings
4. On the limits of the quasi-steady-state method to predict the energy performance of low-energy buildings
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献