Development of Virtual Tours for Understanding the Built Environment of an Educational Building

Author:

Li Simon1ORCID,Say Winson1ORCID,Rao Sumiran1

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Though we spend a significant amount of time in indoor and built environments as general occupants of residential or commercial spaces, we do not necessarily know how the heating, cooling, and ventilation services work in our occupied spaces. As the mechanical systems of buildings become more complex for energy saving and better indoor air quality, it is beneficial for occupants to learn more their built environment so that they can cooperate effectively for the building’s performance. In this context, the purpose of this research is to develop and evaluate how virtual reality (VR) technology can support occupants in understanding their built environment. An educational building on campus was selected for the development as it provides familiar spaces for potential participants in this research. This research was carried out in two stages. In Stage One, we, as researchers in mechanical engineering, explored the workflow for VR development and developed VR tours for four spaces: a classroom, an auditorium, a conference room, and a mechanical room. In Stage Two, we conducted a survey study to examine the VR experience from the perspective of users. In this survey study, we recruited 34 participants from engineering students/graduates, industry participants, and a sustainability group. The participants generally indicated a positive experience with the VR tours, although the quiz scores on the VR content were weak. From our reflection, we consider that positive and effective VR experiences for the education of the built environment require collaboration from three domains: (1) mechanical systems of buildings, (2) VR technology, and (3) pedagogy.

Funder

Schulich School of Engineering, University of Calgary

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3