Enhancing Flexural Resistance in Pre-Damaged RC Beams with Near-Surface Mounted GFRP Bar and Bolt Anchoring System

Author:

El-Emam Hesham M.12ORCID,Ata Bassam2,Ahmad Seleem S. E.2ORCID,Salim Hani A.1,Reda Ramy M.3

Affiliation:

1. Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA

2. Materials Engineering, Zagazig University, Zagazig 44519, Egypt

3. Civil Engineering Department, Higher Technological Institute (HTI), 10th of Ramadan City 44629, Egypt

Abstract

The objective of this research was to explore the mechanical properties and failure mechanisms of reinforced concrete beams (RC beams) strengthened with near-surface mounted (NSM) glass fiber-reinforced polymer (GFRP) bars. This study focused on evaluating the effect of various factors on the load-deflection response and failure patterns of RC beams, including pre-existing damage, end anchorage, bar length, bar number, and the condition of concrete cover. The tested RC beams were divided into three groups. The first group included undamaged and damaged control beams. The second group involved the strengthening of beams after inducing damage, with variations in bar length, number, and cross-sectional area. This group also included beams strengthened by GFRP bars with and without anchors. In the third group, the effects of different cover materials, cover bonding techniques, and anchor bolts on the strengthening bars were examined. The results of the experiment indicated a notable decrease in both cracking and maximum load capacity for beams that were pre-damaged. The inclusion of anchor bolts appeared to have a noticeable effect, enhancing the load-carrying capacity and reducing mid-span deflection. Opting for two bars proved to be more effective than using three bars, leading to a higher maximum load and improved ductility. Moreover, prioritizing the bonding of the concrete cover at the end of the bars was found to be more important than bonding in the area of maximum moment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3