Acoustic Radiation Study of a Box Girder Viaduct Considering the Frequency-Dependent Viscoelasticity of the Rail Pad

Author:

Zuo Zhiyuan,Liu Linya,Zhou YunlaiORCID,Qin Jialiang,Cui Weitao

Abstract

In order to investigate the mechanism of the frequency-dependent viscoelasticity of the rail pad on the acoustic radiation characteristics of a box girder viaduct, this study establishes a high-order model of its dynamic parameters to reveal the frequency-varying viscoelasticity of the rail pad, and establishes a vehicle–track–viaduct vertical coupling model. Finally, the acoustic radiation characteristics of a box girder viaduct are analyzed by combining the finite element method and the boundary element theory. The results show that the S-stiffness and D-stiffness of the rail pad increase with the increase in frequency, and the frequency sensitivity of the S-stiffness is greater than that of the D-stiffness. The high-order characterization model of the dynamic parameters of the rail pad has a good fitting effect. The main influence frequency band of the frequency variable viscoelasticity of the rail pad on the wheel–rail force and the equivalent discrete spring force of the sliding layer is 30–90 Hz, resulting in the shift of the dominant frequency to a high frequency by 4 Hz. We consider that the frequency-varying viscoelasticity of the rail pad will cause the dominant frequency of the acoustic pressure level of the field point to shift to a high frequency of 4–6 Hz, which has the greatest influence on the sound pressure level of each field point at the Peak Frequency Point of Insertion Loss (PFPIL), and the influence degree is consistent, resulting in the maximum value of the total sound pressure level of the surface field increasing by 4.1 dB. Without considering the frequency-varying viscoelasticity of the rail pad, the sound pressure level of each field point at 20–53 Hz will be overestimated and the sound pressure level of each field point in the 53–100 Hz frequency band will be underestimated. The panel sound power level contribution coefficient of the box girder is obviously different at different frequency points.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference28 articles.

1. Vibration and noise characteristics of an elevated box girder paved with different track structures

2. Noise and Vibration Mitigation Performance of Damping Pad under CRTS-III Ballastless Track in High Speed Rail Viaduct

3. Concrete bridge-borne low-frequency noise simulation based on train–track–bridge dynamic interaction

4. Measurement and Modelling of Noise from the Arsta Bridge in Stockholm;Wang;Notes Numer. Fluid Mech.,2008

5. Effects of fastener stiffness and damping on structure-borne noise of railway box-girders;Zhang;J. Vib. Shock.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3