Evolutionary Algorithms for Strength Prediction of Geopolymer Concrete

Author:

Huang Bingzhang12,Bahrami Alireza3ORCID,Javed Muhammad Faisal4ORCID,Azim Iftikhar5ORCID,Iqbal Muhammad Ayyan6

Affiliation:

1. School of Civil Engineering and Architecture, Liuzhou Institute of Technology, Liuzhou 545004, China

2. Guangxi Prefabricated Building Life Cycle Management and Virtual Simulation Engineering Research Center, Liuzhou 545004, China

3. Department of Building Engineering, Energy Systems and Sustainability Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden

4. Department of Civil Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Swabi 23460, Pakistan

5. Public Health Engineering Department, Government of Khyber Pakhtunkhwa, Peshawar 25000, Pakistan

6. Department of Civil Engineering, University of Engineering and Technology, Lahore 39161, Pakistan

Abstract

Geopolymer concrete (GPC) serves as a sustainable substitute for conventional concrete by employing alternative cementitious materials such as fly ash (FA) instead of ordinary Portland cement (OPC), contributing to environmental and durability benefits. To increase the rate of utilization of FA in the construction industry, distinctive characteristics of two machine learning (ML) methods, namely, gene expression programming (GEP) and multi-expression programming (MEP), were utilized in this study to propose precise prediction models for the compressive strength and split tensile strength of GPC comprising FA as a binder. A comprehensive database was collated, which comprised 301 compressive strength and 96 split tensile strength results. Seven distinct input variables were employed for the modeling purpose, i.e., FA, sodium hydroxide, sodium silicate, water, superplasticizer, and fine and coarse aggregates contents. The performance of the developed models was assessed via numerous statistical metrics and absolute error plots. In addition, a parametric analysis of the finalized models was performed to validate the prediction ability and accuracy of the finalized models. The GEP-based prediction models exhibited better performance, accuracy, and generalization capability compared with the MEP-based models in this study. The GEP-based models demonstrated higher correlation coefficients (R) for predicting the compressive and split tensile strengths, with the values of 0.89 and 0.87, respectively, compared with the MEP-based models, which yielded the R values of 0.76 and 0.73, respectively. The mean absolute errors for the GEP- and MEP-based models for predicting the compressive strength were 5.09 MPa and 6.78 MPa, respectively, while those for the split tensile strengths were 0.42 MPa and 0.51 MPa, respectively. The finalized models offered simple mathematical formulations using the GEP and Python code-based formulations from MEP for predicting the compressive and tensile strengths of GPC. The developed models indicated practical application potential in optimizing geopolymer mix designs. This research work contributes to the ongoing efforts in advancing ML applications in the construction industry, highlighting the importance of sustainable materials for the future.

Funder

Guangxi Key R&D Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3