Improvement of the Inspection Interval of Highway Bridges through Predictive Models of Deterioration

Author:

Santos Ademir F.ORCID,Bonatte Maurício S.ORCID,Sousa Hélder S.ORCID,Bittencourt Túlio N.ORCID,Matos José C.ORCID

Abstract

Bridges have substantial significance within the transport system, considering that their functionality is essential for countries’ social and economic development. Accordingly, a superior level of safety and serviceability must be reached to ensure the operating status of the bridge network. On that account, the recent collapses of road bridges have led the technical–scientific community and society to reflect on the effectiveness of their management. Bridges in a network are likely to share coinciding environmental conditions but may be subjected to distinct structural deterioration processes over time depending on their age, location, structural type, and other aspects. This variation is usually not considered in the bridge management predictions. For instance, the Brazilian standards consider a constant inspection periodicity, regardless of the bridges’ singularities. Consequently, it is helpful to pinpoint and split the bridge network into classes sharing equivalent deterioration trends to obtain a more precise prediction and improve the frequency of inspections. This work presents a representative database of the Brazilian bridge network, including the most relevant data obtained from inspections. The database was used to calibrate two independent predictive models (Markov and artificial neural network). The calibrated model was employed to simulate different scenarios, resulting in significant insights to improve the inspection periodicity. As a result, the bridge’s location accounting for the differentiation of exposure was a critical point when analyzing the bridge deterioration process. Finally, the degradation models developed following the proposed procedure deliver a more reliable forecast when compared to a single degradation model without parameter analysis. These more reliable models may assist the decision process of the bridge management system (BMS).

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3