Predicting the Influence of Soil–Structure Interaction on Seismic Responses of Reinforced Concrete Frame Buildings Using Convolutional Neural Network

Author:

Wang Jishuai12ORCID,Xie Yazhou2ORCID,Guo Tong1,Du Zhenyu1

Affiliation:

1. School of Civil Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China

2. Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada

Abstract

Most regional seismic damage assessment (RSDA) methods are based on the rigid-base assumption to ensure evaluating efficiency, while these practices introduce factual errors due to neglecting the soil–structure interaction (SSI). Predicting the influence of the SSI on seismic responses of regionwide structure portfolios remains a challenging undertaking, as it requires developing numerous high-fidelity, integrated models to capture the dynamic interplay and uncertainties in structures, foundations, and supporting soils. This study develops a one-dimensional convolutional neural network (1D-CNN) model to efficiently predict to what degree considering the SSI would change the inter-story drifts and base shear forces of RC frame buildings. An experimentally validated finite element model is developed to simulate the nonlinear seismic behavior of the building-foundation–soil system. Subsequently, a database comprising input data (i.e., structural and soil parameters, ground motions) and output predictors (i.e., changes in story drift and base shear) is constructed by simulating 1380 pairs of fixed-base versus soil-supported structures under earthquake loading. This large-scale dataset is used to train, test, and identify the optimal hyperparameters for the 1D-CNN model to quantify the demand differences in inter-story drifts and base shears due to the SSI. Results indicate the 1D-CNN model has a superior performance, and the absolute prediction errors of the SSI influence coefficients for the maximum base shear and inter-story drift are within 9.3% and 11.7% for 80% of cases in the testing set. The deep learning model can be conveniently applied to enhance the accuracy of the RSDA of RC buildings by updating their seismic responses where no SSI is considered.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3