Nature-Based Solutions (NBSs) to Mitigate Urban Heat Island (UHI) Effects in Canadian Cities

Author:

Hayes Alexander ThomasORCID,Jandaghian Zahra,Lacasse Michael A.ORCID,Gaur Abhishek,Lu HenryORCID,Laouadi Abdelaziz,Ge Hua,Wang LiangzhuORCID

Abstract

Canada is warming at double the rate of the global average caused in part to a fast-growing population and large land transformations, where urban surfaces contribute significantly to the urban heat island (UHI) phenomenon. The federal government released the strengthened climate plan in 2020, which emphasizes using nature-based solutions (NBSs) to combat the effects of UHI phenomenon. Here, the effects of two NBSs techniques are reviewed and analysed: increasing surface greenery/vegetation (ISG) and increasing surface reflectivity (ISR). Policymakers have the challenge of selecting appropriate NBSs to meet a wide range of objectives within the urban environment and Canadian-specific knowledge of how NBSs can perform at various scales is lacking. As such, this state-of-the-art review intends to provide a snapshot of the current understanding of the benefits and risks associated with the implantation of NBSs in urban spaces as well as a review of the current techniques used to model, and evaluate the potential effectiveness of UHI under evolving climate conditions. Thus, if NBSs are to be adopted to mitigate UHI effects and extreme summertime temperatures in Canadian municipalities, an integrated, comprehensive analysis of their contributions is needed. As such, developing methods to quantify and evaluate NBSs’ performance and tools for the effective implementation of NBSs are required.

Funder

NRC’s Climate Resilient Built Environment Initiative

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3