Experimental Investigation on the Seismic Performance of Novel Prefabricated Composite RC Shear Walls with Concrete-Filled Steel Tube Frame

Author:

Dou Lijun12,Huang Ziheng1,Liu Yuxi1,Wang Yuhao1,Zhao Lei1

Affiliation:

1. School of Civil Engineering, Changchun Institute of Technology, Changchun 130012, China

2. Jilin Province Key Laboratory for Earthquake Resistance & Hazard Mitigation of Civil Engineering, Changchun 130012, China

Abstract

The present study proposed novel prefabricated composite RC shear walls with a concrete-filled steel tube frame (CCRCSW-CFST) because of the superior seismic performance of shear walls incorporating CFSTs as boundary-restrained members. One cast-in-place reinforced concrete shear wall (RCSW) and seven CRCSW-CFSTs, each varying in axial compression ratios, concrete strengths, and shear span ratios, were designed for experimental analysis. Cyclic loading tests were performed on these specimens, yielding the following results: (1) Compared to reinforced concrete shear walls, CCRCSW-CFSTs demonstrated superior seismic performance, with 14.2% increased ductility and 47.5% greater energy dissipation capacity. (2) Elevating the axial compression ratio in CCRCSW-CFSTs resulted in increased yield strength, peak strength, and stiffness. Conversely, this adjustment also expedited the degradation of stiffness with displacement and decreased both ductility and ultimate deformation. (3) The peak displacement and ultimate displacement of CCRCSW-CFSTs were both increased with an increase in concrete strength. Increasing the axial compression ratio enhanced the initial stiffness of CCRCSW-CFSTs and mitigated the rate at which stiffness deteriorated with increasing displacement. (4) The stiffness, peak and ultimate displacements, peak and ultimate loads, and shear span ratio of CCRCSW-CFSTs were significantly reduced as the shear span ratio was increased. (5) The minor slip between the reinforced concrete panel of the precast slab and the encasing C-shaped steel contributed to an increase in early-stage energy dissipation of the CCRCSW-CFSTs.

Funder

Jilin Provincial Scientific and Technological Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3