Assessment of Intelligent Unmanned Maintenance Construction for Asphalt Pavement Based on Fuzzy Comprehensive Evaluation and Analytical Hierarchy Process

Author:

Hu Gensheng1,Shi Gongzuo1,Zhang Runhua23,Chen Jianfeng1,Wang Haichang23,Wang Junzhe23

Affiliation:

1. Zhejiang Communication Investment Expressway Operation Management Co., Ltd., Hangzhou 310020, China

2. China Academy of Transportation Sciences, Beijing 100029, China

3. Testing Technology (Beijing) Co., Ltd. of China Academy of Transportation Sciences, Beijing 100029, China

Abstract

Conventional human-involved maintenance methods for asphalt pavement pose significant challenges when applied to high-traffic road sections, often leading to congestion and safety risks, as well as reduced maintenance efficiency. In recent years, explorations into unmanned construction technology for newly constructed expressways have yielded beneficial and encouraging results. However, its application in road maintenance in more complex environments still needs to be expanded. In this study, an intelligent unmanned maintenance technology for asphalt pavement was applied to the Lilong Highway in Zhejiang Province, China, and the compactability, thickness, surface smoothness, permeability coefficient, and constructure depth of maintenance road sections were measured. Then, based on fuzzy comprehensive mathematics and the analytic hierarchy process, a comprehensive evaluation was performed on the intelligent unmanned maintenance technology, considering the aspects of road quality, safety, application, and socio-economic benefits. The results show that the road quality of intelligent unmanned maintenance technology can meet the road specification requirements. In addition, the membership degree of unmanned maintenance technology in the excellent grade is the highest, reaching 0.805, and the quantified value for the overall evaluation of the application effectiveness of unmanned maintenance technology is 92.10. This means that the final comprehensive evaluation result of unmanned maintenance technology is rated as excellent. The research findings provide decision-makers with valuable insights into the unmanned automation maintenance challenges faced by asphalt pavement, enabling them to implement appropriate measures to elevate the maintenance standards of road transportation.

Funder

Zhejiang Provincial Department of Transportation Science and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3