The Displacement Behaviors of Different Pore-Scales during CO2 Flooding and Huff-n-Puff Processes in Tight Oil Reservoirs Using Nuclear Magnetic Resonance (NMR)

Author:

Yang Mingyang1ORCID,Huang Shijun1,Ma Kuiqian2,Zhao Fenglan1,Sun Haoyue1,Chen Xinyang1

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

2. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China

Abstract

Injecting CO2 into tight oil reservoirs is a potential approach for enhanced oil recovery (EOR) and CO2 sequestration. However, the effects of different pore-scales on EOR are poorly understood, and this has a significant impact on recovery. In this paper, a pore size correction model based on X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) was developed in order to establish the relationship between the pore radius and the transverse relaxation time. Different pore-scales are divided according to the cumulative distribution characteristics of the transverse relaxation time (T2). CO2 flooding and huff-n-puff experiments were conducted to investigate the dynamic displacement behaviors in different pore-scales. The results indicate that there are three pore-scales: micropores (T2 < 0.3 ms), intermediate pores (0.3 ms < T2 < 100 ms), and macropores (100 ms < T2). However, there are also pseudo-sweep pores (PPs), equilibrium pores (EPs), and sweep pores (SPs) in the intermediate pores, depending on whether crude oil has been produced. Interestingly, the pressurization process causes some crude oil in the large pores to be squeezed into small pores. The recovery of CO2 huff-n-puff (19.75%) is obviously lower than that of CO2 flooding (51.61%). Specifically, it was observed that the micropores (−8%) and the pseudo-sweep pores (−37%) have a negative impact on oil recovery, whereas all pore-scales exhibit positive effects during CO2 flooding. In addition, it was found that the critical pore radiuses of CO2 flooding and huff-n-puff were 2.61 ms (0.15 µm) and 25 ms (1.5 µm), respectively, in the experiments, and that there is also more oil remaining in the macropores and the sweep pores during CO2 huff-n-puff. These results provide a deeper understanding of the displacement behaviors of different pore-scales in tight oil reservoirs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3