Finite Element Modelling and Experimental Validation of the Graphite Cutting Process

Author:

Yang Dayong1ORCID,Wei Furui1,Wang Wei1,Zhang Yuchen1,Zeng Lingxin1

Affiliation:

1. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

Graphite is extensively used in the engineering field due to its unique properties, and the study of its cutting mechanism has become particularly important. However, the brittle fracture mechanism of graphite makes it rather easy for cracks with a unique pattern of initiation and growth to develop when processing. Herein, the ABAQUS was selected to establish a finite element model (FEM) of the graphite cutting process. The internal crystal structure of graphite was modelled by a Voronoi structure, and a cohesion unit was globally embedded into the solid unit to simulate crack initiation and growth. In addition, the complete process of chip formation and removal was demonstrated. The analysis of the simulation results showed that the graphite material underwent three periodic cycles of material removal during the cutting process, i.e., large, tiny, and small removal stages. Meanwhile, the simulation results indicated that when ac was large enough, the crack gradually grew inside the graphite and then turned to the upper surface of the graphite. However, when ac was tiny enough, the cracks hardly expanded towards the inside of the graphite but grew upwards for a short period. Then, orthogonal cutting experiments of graphite were conducted, and the FEM was verified based on the experimental chip morphology, machined surface morphology, and current geometric model of the graphite cutting process. The simulation and experimental results were consistent. The hereby-presented FEM was a complement to simulations of the processing of brittle materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3