CsPbBr3 Films Grown by Pulsed Laser Deposition: Impact of Oxygen on Morphological Evolution and Properties

Author:

Marra Marcella1,Provenzano Chiara2,Cesaria Maura1ORCID,Cataldo Rosella1ORCID,Monteduro Anna1ORCID,Caricato Anna1ORCID

Affiliation:

1. Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy

2. Department of Engineering of Innovation, University of Salento, 73100 Lecce, Italy

Abstract

Among all the inorganic perovskites, cesium lead bromide (CsPbBr3) has gained significant interest due to its stability and remarkable optoelectronic/photoluminescence properties. Because of the influence of deposition techniques, the experimental conditions that play a key role in each need to be addressed. In this context, we present CsPbBr3 films grown by pulsed laser deposition (PLD) and discuss the impact of oxygen stemming from their growth under a reduced vacuum, i.e., as the background atmosphere, rather than from post-growth exposure. In detail, stoichiometric mechano-chemically synthesized targets were prepared for deposition by nanosecond-PLD (λ = 248 nm, τ = 20 ns, room temperature, fluence of 1 J/cm2) to produce slightly Br-deficient CsPbBr3 films under different background pressure conditions (P0 = 10−4, 10−2 Pa). The characterization results suggest that the presence of oxygen during the deposition of CsPbBr3 can advantageously passivate bromide-vacancy states in all the film thicknesses and reduce losses from emissions. Overall, our findings shed light on the critical role of oxygen, under conditions in which we ruled out other effects related to air exposure, and provide valuable guidelines for potential applications in various optoelectronic devices.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3