A Study on the Oil-Bearing Stability of Salt-Resistant Foam and an Explanation of the Viscoelastic Phenomenon

Author:

Yang Changhua12,Yu Zhenye2ORCID

Affiliation:

1. School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China

2. Western Hypotonic-Special Hypotonic Reservoir Development and Treatment of Ministry of Education, Xi’an 710065, China

Abstract

Foam is a medium-stable system composed of gas and liquid phases, which has the advantages of low density at the gas phase and high viscosity at the liquid phase, and has a wide application in oil and gas field development and mineral flotation, but its special medium-stable system also brings many problems in industry applications. Scientists have carried out extensive analyses and research on the foam stability and bubble-bursting mechanism, which initially clarified the rules of bubble breakage caused by environmental factors such as temperature and pressure, but the mechanism of bubble bursting under the action of internal factors such as liquid mineralization and oil concentration of the films is still not clearly defined. In this paper, we propose a compound salt-resistant foaming agent, investigated the influence of the aggregation and adsorption behavior of oil droplets on the liquid films and boundaries, and established a relevant aggregation and adsorption model with the population balance equation. We put forward a liquid film drainage mechanism based on the distribution, aggregation, and transport of oil droplets in the liquid films, so as to explain the changes in foam stability under the action of oil droplets. On the other hand, the viscoelastic analysis of foam fluid is performed with a rheometer, and the results show that in comparison with conventional power-law fluid, foam fluid has a complex rheological behavior for low shear thickening, but high shear thinning.

Funder

Jidong Oilfield Key Research Project "Research on Leading Technology of Gas Drive in Shallow, Middle and Deep High Water Reservoirs and Application"

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3