Author:
Sun Peng,Lu Nai-Guang,Dong Ming-Li,Yan Bi-Xi,Wang Jun
Abstract
Highly accurate and easy-to-operate calibration (to determine the interior and distortion parameters) and orientation (to determine the exterior parameters) methods for cameras in large volume is a very important topic for expanding the application scope of 3D vision and photogrammetry techniques. This paper proposes a method for simultaneously calibrating, orienting and assessing multi-camera 3D measurement systems in large measurement volume scenarios. The primary idea is building 3D point and length arrays by moving a scale bar in the measurement volume and then conducting a self-calibrating bundle adjustment that involves all the image points and lengths of both cameras. Relative exterior parameters between the camera pair are estimated by the five point relative orientation method. The interior, distortion parameters of each camera and the relative exterior parameters are optimized through bundle adjustment of the network geometry that is strengthened through applying the distance constraints. This method provides both internal precision and external accuracy assessment of the calibration performance. Simulations and real data experiments are designed and conducted to validate the effectivity of the method and analyze its performance under different network geometries. The RMSE of length measurement is less than 0.25 mm and the relative precision is higher than 1/25,000 for a two camera system calibrated by the proposed method in a volume of 12 m × 8 m × 4 m. Compared with the state-of-the-art point array self-calibrating bundle adjustment method, the proposed method is easier to operate and can significantly reduce systematic errors caused by wrong scaling.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献