Author:
Wang Xuchu,Wang Fusheng,Niu Yanmin
Abstract
Cardiac MRI left ventricular (LV) detection is frequently employed to assist cardiac registration or segmentation in computer-aided diagnosis of heart diseases. Focusing on the challenging problems in LV detection, such as the large span and varying size of LV areas in MRI, as well as the heterogeneous myocardial and blood pool parts in LV areas, a convolutional neural network (CNN) detection method combining discriminative dictionary learning and sequence tracking is proposed in this paper. To efficiently represent the different sub-objects in LV area, the method deploys discriminant dictionary to classify the superpixel oversegmented regions, then the target LV region is constructed by label merging and multi-scale adaptive anchors are generated in the target region for handling the varying sizes. Combining with non-differential anchors in regional proposal network, the left ventricle object is localized by the CNN based regression and classification strategy. In order to solve the problem of slow classification speed of discriminative dictionary, a fast generation module of left ventricular scale adaptive anchors based on sequence tracking is also proposed on the same individual. The method and its variants were tested on the heart atlas data set. Experimental results verified the effectiveness of the proposed method and according to some evaluation indicators, it obtained 92.95% in AP50 metric and it was the most competitive result compared to typical related methods. The combination of discriminative dictionary learning and scale adaptive anchor improves adaptability of the proposed algorithm to the varying left ventricular areas. This study would be beneficial in some cardiac image processing such as region-of-interest cropping and left ventricle volume measurement.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献