Vibration Suppression of Two Adjacent Cables Using an Interconnected Tuned Mass Damper/Nonlinear Energy Sink

Author:

Yao Che1,Li Dejian1,Wei Xiaojun1ORCID

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

Due to their high flexibility, low damping, and small mass, stay cables are prone to large-amplitude vibrations. Various mechanical measures, typically installed near the cable anchorage to the deck, have been developed to suppress cable vibration. These dampers, however, may not be effective for ultralong cables since the damper is close to the cable anchorage, the cable node. In this paper, a tuned mass damper (TMD)/nonlinear energy sink (NES) are considered for installation between two adjacent stay cables for vibration mitigation. Firstly, the static equilibrium equation of the stay cable–damper system is established, and the influence of the self-weight of the damper on cable shape is investigated. The governing equations describing the motion of the two adjacent cables with a damper are then established using the Hamilton principle, which are then solved by the method of separation of variables. For cases of swept-sine excitation and harmonic excitation, the optimal designs of TMD and NES are achieved with the purpose of suppressing the first- and third-mode-dominated vibrations, respectively. Both optimal TMD and NES may substantially suppress cable vibrations, with each having advantages under certain situations. Finally, the dynamic response characteristics of two adjacent cables with an optimal damper are analyzed. Interesting dynamic behaviors, such as energy input suppression, phase shift, cable frequency shift, and phase diagram boundary rotation, are identified, and their mechanisms are explained.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3