Affiliation:
1. Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education, Chengdu 610039, China
2. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Abstract
The Rosin–Rammler function is used in this paper to model the diameter distribution of sand particles. It investigates the characteristics of sand distribution and identifies the primary factors contributing to wear on flow components in a blade-type multiphase pump, considering varying particle sizes. The result of research shows that the blade head of the impeller and the middle section of the flow passage in the diffuser domain represent primary areas prone to sand particle accumulation. The concentration of sand particles within the diffuser surpasses that within the impeller, yet wear severity and extent are more pronounced in the impeller domain compared to the diffuser domain. Meanwhile, the movement trajectory of sand particles is linked to both shear flow and vortex flow. The wear of the front section of the impeller blade is more severe than the second half. On the pressure surface of the blade, particle Reynolds number emerges as a primary factor influencing wear, while on the suction surface, sand particle concentration plays a dominant role in determining wear. The particle concentration in the diffuser domain is the primary factor influencing wear on both the suction and pressure surfaces. The wear rate in the impeller is primarily influenced by the sand particle Reynolds number, whereas the wear rate in the diffuser domain is affected by a combination of sand particle diameter, sand particle concentration, and sand particle Reynolds number. The research findings possess significant engineering value in terms of enhancing the operational lifespan of multiphase pumps.
Funder
the Sichuan Natural Science Foundation Outstanding Youth Science Foundation