NUAM-Net: A Novel Underwater Image Enhancement Attention Mechanism Network

Author:

Wen Zhang1ORCID,Zhao Yikang1,Gao Feng1ORCID,Su Hao1,Rao Yuan1ORCID,Dong Junyu1

Affiliation:

1. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266005, China

Abstract

Vision-based underwater exploration is crucial for marine research. However, the degradation of underwater images due to light attenuation and scattering poses a significant challenge. This results in the poor visual quality of underwater images and impedes the development of vision-based underwater exploration systems. Recent popular learning-based Underwater Image Enhancement (UIE) methods address this challenge by training enhancement networks with annotated image pairs, where the label image is manually selected from the reference images of existing UIE methods since the groundtruth of underwater images do not exist. Nevertheless, these methods encounter uncertainty issues stemming from ambiguous multiple-candidate references. Moreover, they often suffer from local perception and color perception limitations, which hinder the effective mitigation of wide-range underwater degradation. This paper proposes a novel NUAM-Net (Novel Underwater Image Enhancement Attention Mechanism Network) that addresses these limitations. NUAM-Net leverages a probabilistic training framework, measuring enhancement uncertainty to learn the UIE mapping from a set of ambiguous reference images. By extracting features from both the RGB and LAB color spaces, our method fully exploits the fine-grained color degradation clues of underwater images. Additionally, we enhance underwater feature extraction by incorporating a novel Adaptive Underwater Image Enhancement Module (AUEM) that incorporates both local and long-range receptive fields. Experimental results on the well-known UIEBD benchmark demonstrate that our method significantly outperforms popular UIE methods in terms of PSNR while maintaining a favorable Mean Opinion Score. The ablation study also validates the effectiveness of our proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3