Empirical Orthogonal Function Analysis on Long-Term Profile Evolution of Tidal Flats along a Curved Coast in the Qiantang River Estuary, China

Author:

Li Ying1,Pan Dongzi2ORCID

Affiliation:

1. Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

2. Zhejiang Key Laboratory of Estuary and Coast, Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China

Abstract

Abstract: Tidal flats are dynamic coastal ecosystems continually reshaped by natural processes and human activities. This study investigates the application of Empirical Orthogonal Function (EOF) analysis to the long-term profile evolution of tidal flats along the Jiansan Bend of the Qiantang River Estuary, China. By applying EOF analysis to profiles observed from 1984 to 2023, this study identifies dominant modes of variability and their spatial and temporal characteristics, offering insights into the complex sediment transport and morphological evolution processes. EOF analysis helps unravel the complex interactions between natural and anthropogenic factors shaping tidal flats, with the first three eigenfunctions accounting for over 90% of the observed variance. The first spatial eigenfunction captures the primary trend, while the subsequent two eigenfunctions reveal secondary and tertiary modes of variability. A conceptual model developed in this study elucidates the interplay between hydrodynamic forces and morphological changes, highlighting the rotation and oscillation of tidal flat profiles in response to seasonal variations in hydrological conditions. The findings emphasize the effectiveness of EOF analysis in capturing significant geomorphological processes and underscore its potential in enhancing the understanding of tidal flat dynamics, thereby informing more effective management and conservation strategies for these critical coastal environments.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Key Program of the President of the Zhejiang Institute of Hydraulics and Estuary

Nanxun Scholars Program of ZJWEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3