Fully Coupled Hydrodynamic–Mooring–Motion Response Model for Semi-Submersible Tidal Stream Turbine Based on Actuation Line Method

Author:

Wang Guohui12,Zhang Jisheng12,Lin Xiangfeng12,Chen Hao123,Wang Fangyu12,Liu Siyuan4

Affiliation:

1. Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210024, China

2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China

3. Institute of Water Science and Technology, Hohai University, Nanjing 210024, China

4. School of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

The modeling of floating tidal stream energy turbine (FTSET) systems demands significant computational resources, especially when incorporating fully coupled models that integrate hydrodynamics, mooring, motion response, and their interactions. In this study, a novel hybrid numerical model for FTSET systems has been developed, utilizing the open-source software OpenFOAM. The hydrodynamic characteristics of three-bladed vertical-axis turbines are simulated in steady, three-dimensional wave–current numerical tanks using an unsteady actuator line method (UALM). The interFoam two-phase Navier–Stokes solver within OpenFOAM is utilized to manage the kinematic characteristics of the floating platform. Mooring dynamics are addressed using the mass–spring–damper model (MoorDyn), and turbine wake dynamics are resolved using a buoyancy-modified RANS turbulence model. The comprehensive model can simulate wave, flow, mooring dynamics, platform motion, and the interactions between the turbine and platform within FTSET systems. To validate the model, several scenarios are analyzed, and experiments are conducted to validate the numerical results. The model accurately predicts platform motion responses and mooring line tensions, especially under wave–current conditions, capturing the interconnected effects of platform motion during turbine rotation. Additionally, the model extends predictions of turbine–platform wake development and interaction.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3