A 1640-Year Vegetation and Fire History of the Lake Haixihai Catchment in Northwestern Yunnan, Southwest China

Author:

Shi Qian1,Shen Caiming1ORCID,Meng Hongwei1,Huang Linpei1,Sun Qifa1

Affiliation:

1. Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, Kunming 650500, China

Abstract

Vegetation and fire archives of the late Holocene are essential for understanding the importance of natural and anthropogenic forcings on past and future vegetation successions as well as climate changes. Here we present a 1640-year record of vegetation and fire history of the Lake Haixihai catchment in northwestern Yunnan, southwest China. Pollen and charcoal analyses as well as XRF (X-ray fluorescence) analysis of lacustrine sediments from Lake Haixihai were employed to reveal its regional vegetation, forest fire, and soil erosion intensity changes over the last 1640 years. The results show their significant changes attributed to both climatic conditions and human activities: The lake catchment witnessed the densest forests (including pine and hemlock forests, and evergreen broadleaved forests) and the weakest soil erosion of the last 1640 years as well as relatively frequent forest fires at 380–880 AD, when vegetation succession, forest fire, and soil erosion were mainly driven by natural forcings, i.e., climatic conditions. A significant and abrupt drop in forest density, minor changes in abundance of forest components, and gradually strengthening soil erosion occurred at the transition from 880 to 1040 AD, when anthropogenic forcings such as the development of agriculture and systematic deforestation gradually became dominant ones driving vegetation succession and soil erosion. After this transition, forest density and soil erosion intensity never returned to the level before 880 AD, implying that the modern landscape in the lake catchment was already established approximately at as early as ca. 1040 AD. No significant changes in forest component and density as well as forest fire and soil erosion occurred until 1940 AD. The most frequent forest fires, the strongest soil erosion, and low forest density after 1940 AD might be attributed partially to climatic conditions and partially to extensive deforestation around 1960 AD.

Funder

National Natural Science Foundation of China

Special Project for Basic Research of Yunnan Province—Key Project

Yunnan Project for the Introduction of Advanced Talents

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3