Author:
Chen Zhanglan,Xiong Yunfeng,Li Xiaowen,Li Zongmin
Abstract
The evolution of the martensite–austenite (MA) constituent in the heat-affected zone (HAZ) of high-strength steel FH690 welds when subjected to electropulsing (EP) treatment was investigated herein, with the aim of eliminating brittle MA to enhance toughness. The features induced by EPT were correlated with the microstructure and fractography through scanning electron microscopy and electron backscatter diffraction analyses, together constituting an impact property evaluation. The Charpy V-notch impact results showed EPT could improve toughness of the HAZ from 34.1 J to 51.8 J (the calibrated value was 46 J). Examinations of EP-treated microstructure showed a preferred Joule heating: at the site of the MA constituent, the cleavage fractography introduced by the MA constituent was substituted with ductile dimples with various sizes. Decreases in grain size of 40% and 47% for the matrix and the retained austenite, respectively, were achieved; while for regions without the MA constituent, microstructural modification was negligible. The temperature rise at sample surface was less than 60 °C. The mechanism behind this favorable Joule heating for the MA constituent was correlated with the electrical properties of the MA constituent in contrast with martensite matrix. The toughness enhancement of the HAZ was thus attributed to the elimination of the coarse MA constituent. The present investigation suggested that electropulsing, characterized as a narrow-duration current, is a promising method for preferred elimination of brittle factors and thus improving the toughness of HAZ of high-strength steel within a limited region with a width less than 2 mm.
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Fujian Province
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献