Meso-Microporous Carbon Nanofibrous Aerogel Electrode Material with Fluorine-Treated Wood Biochar for High-Performance Supercapacitor

Author:

Hasan Md Faruque1,Asare Kingsford1,Mantripragada Shobha1,Charles Victor1ORCID,Shahbazi Abolghasem2,Zhang Lifeng1ORCID

Affiliation:

1. Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA

2. Department of Natural Resources and Environmental Design, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA

Abstract

A supercapacitor is an electrical energy storage system with high power output. With worldwide awareness of sustainable development, developing cost-effective, environmentally friendly, and high-performance supercapacitors is an important research direction. The use of sustainable components like wood biochar in the electrode materials for supercapacitor uses holds great promise for sustainable supercapacitor development. In this study, we demonstrated a facile and powerful approach to prepare meso-microporous carbon electrode materials for sustainable and high-performance supercapacitor development by electrospinning polyacrylonitrile (PAN) with F-treated biochar and subsequent aerogel construction followed by stabilization, carbonization, and carbon activation. The resultant carbon nanofibrous aerogel electrode material (ENFA-FBa) exhibited exceptional specific capacitance, attributing to enormously increased micropore and mesopore volumes, much more activated sites to charge storage, and significantly greater electrochemical interaction with electrolyte. This electrode material achieved a specific capacitance of 407 F/g at current density of 0.5 A/g in 1 M H2SO4 electrolyte, which outperformed the state-of-the-art specific capacitance of biochar-containing electrospun carbon nanofibrous aerogel electrode materials (<300 F/g). A symmetric two-electrode cell with ENFA-FBa as electrode material showed an energy density of 11.2 Wh/kg at 125 W/kg power density. Even after 10,000 cycles of charging-discharging at current density of 10 A/g, the device maintained a consistent coulombic efficiency of 53.5% and an outstanding capacitance retention of 91%. Our research pointed out a promising direction to develop sustainable electrode materials for future high-performance supercapacitors.

Funder

USDA/NIFA Evans-Allen Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3