SRide: An Online System for Multi-Hop Ridesharing

Author:

Shah InayatullahORCID,El Affendi Mohammed,Qureshi BasitORCID

Abstract

In the context of smart cities, ridesharing in urban areas is gaining researchers’ interest and is considered to be a sustainable transportation solution. In this paper, we present SRide (Shared Ride), a multi-hop ridesharing system as a mode of sustainable transportation. Multi-hop ridesharing is a type of ridesharing in which a rider travels in multiple hops to reach a destination, transferring from one driver to another between hops. The key problem in multi-hop ridesharing is to find an optimal itinerary or route plan for a rider from an origin to a destination in a dynamic, online setting. SRide adopts a novel approach to finding itineraries for riders suited to the online nature of the problem. The system represents ride offers as a time-dependent directed graph and finds itineraries dynamically by updating the graph incrementally and decrementally as ride offers are updated in the system. The system’s distinguishing feature is its incremental and decremental operation, which is enabled by employing dynamic single-source shortest-path algorithms. We conducted two extensive simulation studies to evaluate its performance. Metrics, including the matching rate, savings in total system-wide vehicle-miles, and total system-wide driving times were measured. In the first study, SRide’s dynamic update algorithms were compared with their non-dynamic versions. Results show that SRide’s algorithms run up to thirteen times faster than their non-dynamic versions. In the second study, we used data from the travel demand model for metropolitan Atlanta in the US state of Georgia, to assess the benefits of multi-hop ridesharing. Results show that matching rates increase up to 68%, saving in total system-wide vehicle-miles of up to 12%, and reduction in the total system-wide driving time of up to 12.86% is achieved.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topology-aware scalable resource management in multi-hop dense networks;Heliyon;2024-09

2. Tourist acceptance of using ride-sharing services in a tourism destination: hedonia vs eudaimonia and technophilia vs technophobia;International Journal of Tourism Cities;2024-07-23

3. DeliverAI: Reinforcement Learning Based Distributed Path-Sharing Network for Food Deliveries;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. A Survey of Machine Learning-Based Ride-Hailing Planning;IEEE Transactions on Intelligent Transportation Systems;2024-06

5. On non-myopic internal transfers in large-scale ride-pooling systems;Transportation Research Part C: Emerging Technologies;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3