Functional Characterization of the Lysosomal Peptide/Histidine Transporter PHT1 (SLC15A4) by Solid Supported Membrane Electrophysiology (SSME)

Author:

Pujol-Giménez Jonai12ORCID,Baumann Sven P.123,Ho Tin Manh12ORCID,Augustynek Bartlomiej12,Hediger Matthias A.12

Affiliation:

1. Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland

2. Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland

3. Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland

Abstract

The peptide/histidine transporter PHT1 (SLC15A4) is expressed in the lysosomal membranes of immune cells where it plays an important role in metabolic and inflammatory signaling. PHT1 is an H+-coupled/histidine symporter that can transport a wide range of oligopeptides, including a variety of bacterial-derived peptides. Moreover, it enables the scaffolding of various metabolic signaling molecules and interacts with key regulatory elements of the immune response. Not surprisingly, PHT1 has been implicated in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Unfortunately, the pharmacological development of PHT1 modulators has been hampered by the lack of suitable transport assays. To address this shortcoming, a novel transport assay based on solid-supported membrane-based electrophysiology (SSME) is presented. Key findings of the present SSME studies include the first recordings of electrophysiological properties, a pH dependence analysis, an assessment of PHT1 substrate selectivity, as well as the transport kinetics of the identified substrates. In contrast to previous work, PHT1 is studied in its native lysosomal environment. Moreover, observed substrate selectivity is validated by molecular docking. Overall, this new SSME-based assay is expected to contribute to unlocking the pharmacological potential of PHT1 and to deepen the understanding of its functional properties.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3