Influence of Thermal and Flash-Lamp Annealing on the Thermoelectrical Properties of Cu2ZnSnS4 Nanocrystals Obtained by “Green” Colloidal Synthesis

Author:

Havryliuk Yevhenii123,Dzhagan Volodymyr34ORCID,Karnaukhov Anatolii3,Selyshchev Oleksandr12ORCID,Hann Julia2ORCID,Zahn Dietrich R. T.12ORCID

Affiliation:

1. Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany

2. Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany

3. V.E. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 03028 Kyiv, Ukraine

4. Physics Department, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

Abstract

The problem with waste heat in solar panels has stimulated research on materials suitable for hybrid solar cells, which combine photovoltaic and thermoelectric properties. One such potential material is Cu2ZnSnS4 (CZTS). Here, we investigated thin films formed from CZTS nanocrystals obtained by “green” colloidal synthesis. The films were subjected to thermal annealing at temperatures up to 350 °C or flash-lamp annealing (FLA) at light-pulse power densities up to 12 J/cm2. The range of 250–300 °C was found to be optimal for obtaining conductive nanocrystalline films, for which the thermoelectric parameters could also be determined reliably. From phonon Raman spectra, we conclude that in this temperature range, a structural transition occurs in CZTS, accompanied by the formation of the minor CuxS phase. The latter is assumed to be a determinant for both the electrical and thermoelectrical properties of CZTS films obtained in this way. For the FLA-treated samples, the film conductivity achieved was too low to measure the thermoelectric parameters reliably, although the partial improvement of the CZTS crystallinity is observed in the Raman spectra. However, the absence of the CuxS phase supports the assumption of its importance with respect to the thermoelectric properties of such CZTS thin films.

Funder

DFG Project

Alexander von Humbold Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3