Estimation of Genetic Parameters of Early Growth Traits in Dumeng Sheep

Author:

Wang Ruijun1,Wang Xinle1ORCID,Liu Baodong1,Zhang Lifei1,Li Jing1,Chen Dayong2,Ma Yunhui2,He Huijie2,Liu Jie2,Liu Yongbin3,Zhang Yanjun145

Affiliation:

1. College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Inner Mongolia Sino Sheep Technology Co., Ltd., Ulanqab 011800, China

3. School of Life Sciences, Inner Mongolia University, Hohhot 010020, China

4. Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China

5. Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot 010018, China

Abstract

This study aimed to estimate the genetic and non-genetic factors that affect the nine early growth traits of Dumeng sheep, as well as to estimate the variance components and genetic parameters associated with these traits. A dataset containing detailed information on 17,896 preweaning trait records of 4474 lambs was collected. In addition, 5015 postweaning trait records of 1003 lambs were documented. The effects of recipient dam age, sex, year, season, and herd on the early growth traits were assessed using the general linear model procedure of the statistical analysis system, revealing different levels of significance across different traits. To determine the most suitable model for estimating the genetic parameters, the likelihood ratio (LR) test was employed, fitting six animal models that either excluded or included maternal genetic and maternal permanent environmental effects within the average information restricted maximum likelihood (AIREML) framework using WOMBAT software (Version: 23/11/23). The model incorporating direct additive genetic effects, maternal genetic effects, and maternal permanent environment effects as random effects (model 6) provided the best fit for birth weight (BW) estimation. In contrast, the model combining direct additive genetic effects and maternal permanent environment effects as random effects (model 2) demonstrated a superior fit for estimating the genetic parameters of weaning weight (WW), average daily gain weight from birth to weaning (ADG1), and Kleiber ratio from birth to weaning (KR1). With regard to the genetic parameters of body weight at 6 months of age (6MW), average daily gain weight from weaning to 6 months (ADG2), average daily gain weight from birth to 6 months (ADG3), Kleiber ratio from weaning to 6 months (KR2), and Kleiber ratio from birth to 6 months (KR3), model 1, which incorporates only direct additive genetic effects, was identified as the optimal choice. With the optimal model, the heritability estimates ranged from 0.010 ± 0.033 for 6MW to 0.1837 ± 0.096 for KR3. The bivariate analysis method was employed to estimate the correlation between various traits using the most suitable model. The absolute values of genetic correlation coefficients among the traits spanned a range from 0.1460 to 0.9998, highlighting both weak and strong relationships among the studied traits. Specifically, the estimated genetic correlations between WW and ADG1, ADG3, KR1, and KR3 were 0.9859, 0.9953, 0.9911, and 0.9951, respectively, while the corresponding phenotypic correlations were 0.9752, 0.7836, 0.8262, and 0.5767. These findings identified that WW could serve as an effective selection criterion for enhancing early growth traits.

Funder

National Key Basic Research Program of China

Inner Mongolia Autonomous Region “Leading the Charge with Open Competition” topic

Fundamental Research Funds of Directily Subordinate Universities of Inner Mongolia Autonomous Region

Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region

Special Funds for Basic Scientific Research Operating Expenses of Inner Mongolia Agricultural University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3