A Mixed-Integer and Asynchronous Level Decomposition with Application to the Stochastic Hydrothermal Unit-Commitment Problem

Author:

Colonetti Bruno,Finardi Erlon CristianORCID,de Oliveira Welington

Abstract

Independent System Operators (ISOs) worldwide face the ever-increasing challenge of coping with uncertainties, which requires sophisticated algorithms for solving unit-commitment (UC) problems of increasing complexity in less-and-less time. Hence, decomposition methods are appealing options to produce easier-to-handle problems that can hopefully return good solutions at reasonable times. When applied to two-stage stochastic models, decomposition often yields subproblems that are embarrassingly parallel. Synchronous parallel-computing techniques are applied to the decomposable subproblem and frequently result in considerable time savings. However, due to the inherent run-time differences amongst the subproblem’s optimization models, unequal equipment, and communication overheads, synchronous approaches may underuse the computing resources. Consequently, asynchronous computing constitutes a natural enhancement to existing methods. In this work, we propose a novel extension of the asynchronous level decomposition to solve stochastic hydrothermal UC problems with mixed-integer variables in the first stage. In addition, we combine this novel method with an efficient task allocation to yield an innovative algorithm that far outperforms the current state-of-the-art. We provide convergence analysis of our proposal and assess its computational performance on a testbed consisting of 54 problems from a 46-bus system. Results show that our asynchronous algorithm outperforms its synchronous counterpart in terms of wall-clock computing time in 40% of the problems, providing time savings averaging about 45%, while also reducing the standard deviation of running times over the testbed in the order of 25%.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3