Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway

Author:

Chang Zhishuai,Dai Wei,Mao YufengORCID,Cui Zhenzhen,Wang Zhiwen,Chen TaoORCID

Abstract

3-Hydroxypropionic acid (3-HP) has been recognized as one of the top value-added building block chemicals, due to its numerous potential applications. Over the past decade, biosynthesis of 3-HP via the malonyl-CoA pathway has been increasingly favored because it is balanced in terms of ATP and reducing equivalents, does not require the addition of costly coenzymes, and can utilize renewable lignocellulosic biomass. In this study, gene mcr encoding malonyl-CoA reductase from Chloroflexus aurantiacus was introduced into Corynebacterium glutamicum ATCC13032 to construct the strain Cgz1, which accumulated 0.30 g/L 3-HP. Gene ldhA encoding lactate dehydrogenase was subsequently deleted to eliminate lactate accumulation, but this decreased 3-HP production and greatly increased acetate accumulation. Then, different acetate utilization genes were overexpressed to reuse the acetate, and the best candidate Cgz5 expressing endogenous gene pta could effectively reduce the acetate accumulation and produced 0.68 g/L 3-HP. To enhance the supply of the precursor acetyl-CoA, acetate was used as an ancillary carbon source to improve the 3-HP production, and 1.33 g/L 3-HP could be produced from a mixture of glucose and acetate, with a 2.06-fold higher yield than from glucose alone. Finally, to inhibit the major 3-HP competing pathway-fatty acid synthesis, 10 μM cerulenin was added and strain Cgz5 produced 3.77 g/L 3-HP from 15.47 g/L glucose and 4.68 g/L acetate with a yield of 187 mg/g substrate in 48 h, which was 12.57-fold higher than that of Cgz1. To our best knowledge, this is the first report on engineering C. glutamicum to produce 3-HP via the malonyl-CoA pathway. The results indicate that the innocuous biosafety level I microorganism C. glutamicum is a potential industrial 3-HP producer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3