Abstract
In this study, silicoaluminophosphate (SAPO)-34 and Me (Me = Cr, Co)-modified SAPO-34 were synthesized and used as catalysts to investigate the catalytic performance by means of a probe reaction from ethanol to ethylene. The metal oxides were loaded on the SAPO-34 support via an impregnation method. The synthesized catalysts were characterized using XRD, SEM, EDX, FT-IR, NH3-TPD, BET, and TGA techniques. Compared to SAPO-34, SAPO-34 doped with metal oxides showed the same chabazite (CHA) topology. The structure and properties of the catalyst were further optimized by varying the amount of Me. The experimental results showed that Co-Cr/SAPO-34 exhibited the best catalytic performance when the reaction temperature reached 400 °C at a weight hourly space velocity (WHSV) of 3.5 h−1, for which the single-pass conversion of ethanol was determined as 99.15%, and the selectivity of ethylene was 99.4% at an optimum catalytic performance in the reaction of up to 600 min. In addition, Co-Cr/SAPO-34 exhibited better catalytic activity and anti-coking ability than pure SAPO-34, which was attributed to its enhanced pore structure and moderate acidity. It can also be concluded from the results of this experiment that the performance of the Co-Cr bimetal-supported catalyst is better than that of the Cr mono-metal catalyst.
Funder
Natural Science Foundation of Guangxi Province
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献