Abstract
Rhodium (Rh) nanoparticles were embedded in the mesopores of TUD-1 siliceous material and denoted as Rh-TUD-1. Five samples of Rh-TUD-1 were prepared with different loadings of Rh that ranged from 0.1 to 2 wt% using the sol-gel technique. The prepared samples were characterized by means of several chemical and physical techniques. The obtained characterization results show the formation of highly distributed Rh0 nanoparticles with an average size ranging from 3 to 5 nm throughout the three-dimensional silica matrix of TUD-1. The catalytic activity of the prepared catalysts was evaluated in the solvent-free hydrogenation of cyclohexene to cyclohexane at room temperature using 1atm of hydrogen gas. The obtained catalytic results confirm the high activity of Rh-TUD-1, in which a turn over frequency (TOF) ranging from 4.94 to 0.54 s−1 was obtained. Moreover, the change in reaction temperature during the reaction was monitored, and it showed an obvious increase in the reaction temperature as an indication of the spontaneous and exothermic nature of the reactions. Other optimization parameters, such as the substrate/catalyst ratio, and performing the reaction under non-ambient conditions (temperature = 60 °C and hydrogen pressure = 5 atm) were also investigated. Rh-TUD-1 exhibited a high stability in a consecutive reaction of five runs under either ambient or non-ambient conditions.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献