Abstract
Evapotranspirative willow systems (EWS) are zero-discharge wastewater treatment plants that produce woody biomass and have no discharge to surface or groundwater bodies. The influence of wastewater on the growth of three clones of Salix alba (‘V 093’, ‘V 051’ and ‘V 160’) and the distribution of macronutrients and metals in a pilot EWS receiving primary treated municipal wastewater was studied under a sub-Mediterranean climate. The influent wastewater, shoot number, stem height, and biomass production at coppicing were monitored in two consecutive two-year rotations. Soil properties and the concentrations of macronutrients and metals in soil and woody biomass were analyzed after the first rotation. S. alba clones in EWS produced significantly more woody biomass compared to controls. ‘V 052’ produced the highest biomass yield in both rotations (38–59 t DM ha−1) and had the highest nitrogen and phosphorus uptake (48% and 45%) from wastewater. Nitrogen and phosphorus uptake into the harvestable woody biomass was significantly higher in all clones studied compared to other plant-based wastewater treatment plants, indicating the nutrient recovery potential of EWS. The indigenous white willow clone ‘V 160’ had the lowest biomass yield but absorbed more nutrients from wastewater compared to ‘V 093’. Wastewater composition and load were consistent with the nutrient requirements of the willows; however, an increase in salinity was observed after only two years of operation, which could affect EWS efficiency and nutrient recovery in the long term.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Ministry for Agriculture, Forestry and Food of the Republic of Slovenia
Reference65 articles.
1. Willows for energy and phytoremediation in Sweden;Dimitriou;Unasylva,2005
2. Willow Vegetation Filters for Municipal Wastewaters and Sludges: A Biological Purification System,1994
3. Municipal wastewater application to Short Rotation Coppice of willows – Treatment efficiency and clone response in Estonian case study
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献