Risk Assessment of a Coupled Natural Gas and Electricity Market Considering Dual Interactions: A System Dynamics Model

Author:

Wang Lin,Xing Yuping

Abstract

Because reliance on gas for electricity generation rises over time, the natural gas and electricity markets are highly connected. However, both of them are susceptible to various risk factors that endanger energy security. The intricate interactions among multiple risks and between the two markets render risk assessment more challenging than for individual markets. Taking a systematic perspective, this study first undertook a thorough analysis of the evolution mechanism that indicated the key risk factors and dual interactions, with real-world illustrative examples. Subsequently, a system dynamics model was constructed for understanding the causal feedback structures embedded in the operation of a coupled natural gas–electricity market in the face of risks. Quantitative experiments were conducted by using data from China’s Energy Statistical Yearbook, China’s Statistical Yearbook and other reliable sources to assess the effects of individual risks, depict the evolutionary behavior of coupled markets and compare the risk response strategies. The findings revealed the evolution of dominant risk factors and the aggregated effects of multiple risks in multiple markets, suggesting the need to comprehensively monitor dynamic risks. Moreover, risk factors can propagate from one market to another via interactions, yet it depends on multiple aspects such as the severity of the risk and the intensity of the interactions. Demand compression and emergency natural gas supply behave differently throughout the market’s recovery, necessitating a balance between short-term and long-term risk response strategies.

Funder

MOE (Ministry of Education in China) Project of Humanities and Social Sciences

Shanghai Yang Fan Program

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3