Fagonia cretica-Mediated Synthesis of Manganese Oxide (MnO2) Nanomaterials Their Characterization and Evaluation of Their Bio-Catalytic and Enzyme Inhibition Potential for Maintaining Flavor and Texture in Apples

Author:

Faisal ShahORCID,Khan Shahzar,Abdullah ORCID,Zafar Sania,Rizwan Muhammad,Ali Muhammad,Ullah RiazORCID,Albadrani Ghadeer M.ORCID,Mohamed Hanan R. H.,Akbar Fazal

Abstract

The apple is the most widely used fruit globally. Apples are more prone to fungal spoilage, which leads to browning and subsequent changes in their flavor and texture. Browning is also caused by the tyrosinase enzyme. By inhibiting tyrosinase initiation and fungal spoilage in fruits, the natural flavor and texture of fruits can be maintained. Biogenic NPs can act as antioxidants to inhibit tyrosinase and due to oxidative stress, it also catalyzes the deformation of fungal hyphae and spores. Nanotechnology is a research hotspot that has gained considerable interest due to its potential inferences in biosciences and food preservation technology. The present study aims to use biomass from the Fagonia cretica to create bio-inspired manganese oxide MnO2 NPs and to evaluate its bio-catalytic potential for antifungal anti-browning through the inhibition of tyrosinase and its antioxidant potential for preserving apple flavor and texture. The green synthesized nanoparticles were extensively analyzed using UV spectroscopy, XRD, SEM, EDX, and FTIR techniques. Moreover, the synthesized manganese oxide nanoparticles (MnO2 NPs) were evaluated for their bio-catalytic potential as anti-fungal and anti-spoiling agents. The values of antifungal activity among all the samples were 14.2 ± 86 mm, 8.9 ± 6.0 mm, 17.7 ± 1.26, and 20.7 ± 4.38 mm for Penicillium expansum, Monilinia fructigena, Penicillium chrysogenum, and Aspergillus oryzae at 200 µg/well, respectively. Moreover, the biogenic NPs were evaluated for their anti-browning potential through the inhibition of tyrosinase. MnO2 NPs have been shown to have considerable inhibitory effects on tyrosinase up to 64.8 ± 0.16 at 200 µg/mL and (27.2 ± 0.58) at 25 µg/mL. Biogenic MnO2 NPs can also act as antioxidants to inhibit tyrosinase and fungal growth by the formation of free radicals that damage the fungal hyphae and, as a result, slow down browning. The maximum DPPH free radical scavenging activity was 74.5 ± 0.39% at 200 µg/mL, and the minimum was 12.4 ± 0.27 at 25 µg/mL. The biogenic MnO2 NPs are biocompatible and play a potent role in maintaining the flavor and texture of apples.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference27 articles.

1. Isolation and Characterization of Fungal Species from Spoilt Fruits in Utako Market, Abuja, Nigeria

2. Artificial preservatives and their harmful effects: Looking toward nature for safer alternatives;Anand;Int. J. Pharm. Sci. Res.,2013

3. Phytochemical Characterization of Fagonia Indica and its Effects on MCF-7 Breast Cancer Cell Linehttps://ir.library.oregonstate.edu/downloads/cj82kd531

4. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors

5. Tyrosinase inhibitory activity of silver nanoparticles treated with Hovenia dulcis fruit extract: An in vitro study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3