Flotation of Copper Ores with High Cu/Zn Ratio: Effects of Pyrite on Cu/Zn Separation and an Efficient Method to Enhance Sphalerite Depression

Author:

Aikawa KoseiORCID,Ito Mayumi,Orii Nodoka,Jeon Sanghee,Park IlhwanORCID,Haga Kazutoshi,Kamiya Taro,Takahashi Tatsuru,Sunada Kazuya,Sakakibara Taisuke,Ono Tatsuhiro,Magwaneng Refilwe S.,Hiroyoshi Naoki

Abstract

Porphyry copper deposits are important sources of copper and typically processed by flotation to produce copper concentrates. As mining areas become deeper, the amounts of impurities, such as sphalerite, can be increased in copper ores, so the appropriate depression of sphalerite floatability should be achieved to obtain saleable copper concentrates. In this study, the flotation behaviors of chalcopyrite and sphalerite in model samples mimicking copper ores with high Cu/Zn ratios (i.e., the ratio of chalcopyrite/sphalerite = 13:1) were investigated with zinc sulfate as a depressant for sphalerite. In addition, the effect of pyrite—a major gangue mineral in copper ores—on the depression of sphalerite floatability with zinc sulfate was examined. When sphalerite and chalcopyrite coexisted, the floatability of the former was effectively depressed by zinc sulfate (Zn recovery: <12%), whereas the presence of pyrite promoted the release of Cu2+ due to the galvanic interaction with chalcopyrite, which resulted in the elimination of the effectiveness of zinc sulfate in depressing sphalerite floatability (Zn recovery: >90%). Despite the presence of much higher amounts of chalcopyrite and pyrite than sphalerite, the application of nitrogen (N2) gas limiting the galvanic interaction between pyrite and chalcopyrite by reducing the dissolved oxygen (DO) concentration in the system effectively depressed the floatability of sphalerite (Zn recovery: <30%).

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3