A Spatiotemporal Deep Neural Network Useful for Defect Identification and Reconstruction of Artworks Using Infrared Thermography

Author:

Moradi MortezaORCID,Ghorbani RaminORCID,Sfarra StefanoORCID,Tax David M.J.,Zarouchas Dimitrios

Abstract

Assessment of cultural heritage assets is now extremely important all around the world. Non-destructive inspection is essential for preserving the integrity of artworks while avoiding the loss of any precious materials that make them up. The use of Infrared Thermography is an interesting concept since surface and subsurface faults can be discovered by utilizing the 3D diffusion inside the object caused by external heat. The primary goal of this research is to detect defects in artworks, which is one of the most important tasks in the restoration of mural paintings. To this end, machine learning and deep learning techniques are effective tools that should be employed properly in accordance with the experiment’s nature and the collected data. Considering both the temporal and spatial perspectives of step-heating thermography, a spatiotemporal deep neural network is developed for defect identification in a mock-up reproducing an artwork. The results are then compared with those of other conventional algorithms, demonstrating that the proposed approach outperforms the others.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3