Author:
Zhou Ligang,Yu Dongsheng,Wang Zhaoyan,Wang Xiangdong
Abstract
The rapid high-precision and nondestructive determination of shallow soil water content (SWC) is of vital importance to precision agriculture and water resource management. However, the low-frequency ground penetrating radar (GPR) technology currently in use is insufficient for precisely determining the shallow SWC. Therefore, it is essential to develop and use a high-precision detection technology to determine SWC. In this paper, a laboratory study was conducted to evaluate the use of a high-frequency GPR antenna to determine the SWC of loamy sand, clay, and silty loam. We collected soil samples (0–20 cm) of six soil types of loamy sand, clay, and silty loam and used a high-frequency (2-GHz) GPR antenna to determine the SWC. In addition, we obtained GPR data and images as well as characteristic parameters of the electromagnetic spectrum and analyzed the quantitative relationship with SWC. The GPR reflection two-way travel times and the known depths of reflectors were used to calculate the average soil dielectric permittivities above the reflectors and establish a spatial relationship between the soil dielectric permittivity ( ε ) and SWC ( θ ), which was used to estimate the depth-averaged SWC. The results show that the SWC, which affects the attenuation of wave energy and the wave velocity of the GPR signal, is a dominant factor affecting the soil dielectric permittivity. In addition, the conductivity, magnetic soil, soil texture, soil organic matter, and soil temperature have substantial effects on the soil dielectric permittivity, which consequentially affects the prediction of SWC. The correlation coefficients R2 of the “ θ ~ ε ” cubic curve models, which were used to fit the relationships between the soil dielectric permittivity ( ε ) and SWC ( θ ), were greater than 0.89, and the root-mean-square errors were less than 2.9%, which demonstrate that high-frequency GPR technology can be applied to determine shallow SWC under variable hydrological conditions.
Funder
National key research and development plan project
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献