Copper(II) Chelates of Schiff Bases Enriched with Aliphatic Fragments: Synthesis, Crystal Structure, In Silico Studies of ADMET Properties and a Potency against a Series of SARS-CoV-2 Proteins

Author:

Panova Elizaveta V.1,Voronina Julia K.2ORCID,Safin Damir A.13ORCID

Affiliation:

1. Institute of Chemistry, University of Tyumen, Volodarskogo Str. 6, 625003 Tyumen, Russia

2. N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt 31, GSP-1, 119991 Moscow, Russia

3. Scientific and Educational and Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia

Abstract

We report two complexes [Cu(LI)2] (1) and [Cu(LII)2] (2) (HLI = N-cyclohexyl-3-methoxysalicylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine). The ligands in both complexes are trans-1,5-N,O-coordinated, yielding a square planar CuN2O2 coordination core. The molecule of 1 is planar with two cyclohexyl groups oriented to the opposite sites of the planar part of a molecule, while the molecule of 2 is significantly bent with two cyclohexyl groups oriented to the same convex site of a molecule. It was established that both complexes in MeOH absorb in the UV region due to intraligand transitions and LMCT. Furthermore, the UV-vis spectra of both complexes revealed two low intense shoulders in the visible region at about 460 and 520 nm, which were attributed to d–d transitions. Both complexes were predicted to belong to a fourth class of toxicity with the negative BBB property and positive gastrointestinal absorption property. According to the molecular docking analysis results, both complexes are active against all the applied SARS-CoV-2 proteins with the best binding affinity with Nsp 14 (N7-MTase), PLpro and Mpro. The obtained docking scores of complexes are either comparable to or even higher than those of the initial ligands. Complex 1 was found to be more efficient upon interaction with the applied proteins in comparison to complex 2. Ligand efficiency scores for the initial ligands, 1 and 2 were also revealed.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3