Developing a Data-Fused Water Quality Index Based on Artificial Intelligence Models to Mitigate Conflicts between GQI and GWQI

Author:

Nadiri Ata AllahORCID,Barzegar RahimORCID,Sadeghfam SinaORCID,Rostami Ali Asghar

Abstract

The study of groundwater quality is typically conducted using water quality indices such as the Groundwater Quality Index (GQI) or the GroundWater Quality Index (GWQI). The indices are calculated using field data and a scoring system that uses ratios of the constituents to the prescribed standards and weights based on each constituent’s relative importance. The results obtained by this procedure suffer from inherent subjectivity, and consequently may have some conflicts between different water quality indices. An innovative feature drives this research to mitigate the conflicts in the results of GQI and GWQI by using the predictive power of artificial intelligence (AI) models and the integration of multiple water quality indicators into one representative index using the concept of data fusion through the catastrophe theory. This study employed a two-level AI modeling strategy. In Level 1, three indices were calculated: GQI, GWQI, and a data-fusion index based on four pollutants including manganese (Mn), arsenic (As), lead (Pb), and iron (Fe). Further data fusion was applied at Level 2 using supervised learning methods, including Mamdani fuzzy logic (MFL), support vector machine (SVM), artificial neural network (ANN), and random forest (RF), with calculated GQI and GWQI indices at Level 1 as inputs, and data-fused indices target values derived from Level 1 fusion as targets. We applied these methods to the Gulfepe-Zarinabad subbasin in northwest Iran. The results show that all AI models performed reasonably well, and the difference between models was negligible based on the root mean square errors (RMSE), and the coefficient of determination (r2) metrics. RF (r2 = 0.995 and RMSE = 0.006 in the test phase) and MFL (r = 0.921 and RMSE = 0.022 in the test phase) had the best and worst performances, respectively. The results indicate that AI models mitigate the conflicts between GQI and GWQI results. The method presented in this study can also be applied to modeling other aquifers.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3