Microclimate Thermal Management Using Thermoelectric Air-Cooling Duct System Operated at Five Incremental Powers and its Effect on Sleep Adaptation of the Occupants

Author:

Irshad KashifORCID,Algarni Salem,Ahmad Mohammad Tauheed,Irfan Sayed Ameenuddin,Habib Khairul,Abdelmohimen Mostafa A.H.,Zahir Md. Hasan,Ahmed Gulam Mohammed SayeedORCID

Abstract

In this study, the microclimate of the test room was regulated using thermoelectric air duct cooling system (TE-AD) operated at input powers-240 W, 360 W, 480 W, 600 W, 720 W, and 840 W, on subsequent nights. Fifteen (15) healthy male volunteers were recruited to sleep under these test conditions and their sleep quality was assessed by studying objective measures such as sleep onset latency (SOL), mean skin temperature and heart rate as well as subjective parameters like predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). There was a consistent improvement on all studied parameters when the power of the system was increased from 240 W to 720 W. The mean sleep onset latency time was reduced from (M = 40.7 +/− 0.98 min) to (M = 18.33 +/− 1.18 min) when the operating power was increased from 240 W to 720 W, denoting an improvement in sleep quality. However, increasing the power further to 840 W resulted in deteriorating cooling performance of the TE-AD system leading to an increase in temperature of the test room and reduction in sleep comfort. Analysis of subjective indices of thermal comfort viz. PMV and PPD revealed that subjects are highly sensitive towards variations in microclimate achieved by changing the operating power of the TE-AD. This device was also found to be environmentally sustainable, with estimated reduction in CO2 emission calculated to be around 38% as compared to the conventional air-conditioning.

Funder

Deanship of Scientific Research, King Khalid University, Ministry of Education, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3