All-In-One: Microbial Response to Natural and Anthropogenic Forcings in a Coastal Mediterranean Ecosystem, the Syracuse Bay (Ionian Sea, Italy)

Author:

Caruso GabriellaORCID,Giacobbe Maria Grazia,Azzaro Filippo,Decembrini Franco,Leonardi Marcella,Miserocchi StefanoORCID,Cao Xiuyun,Song Chunlei,Zhou Yiyong

Abstract

Bacterial and phytoplankton communities are known to be in close relationships, but how natural and anthropogenic stressors can affect their dynamics is not fully understood. To study the response of microbial communities to environmental and human-induced perturbations, phytoplankton and bacterial communities were seasonally monitored in a Mediterranean coastal ecosystem, Syracuse Bay, where multiple conflicts co-exist. Quali-quantitative, seasonal surveys of the phytoplankton communities (diatoms, dinoflagellates and other taxa), the potential microbial enzymatic activity rates (leucine aminopeptidase, beta-glucosidase and alkaline phosphatase) and heterotrophic culturable bacterial abundance, together with the thermohaline structure and trophic status in terms of nutrient concentrations, phytoplankton biomass (as Chlorophyll-a), and total suspended and particulate organic matter, were carried out. The aim was to integrate microbial community dynamics in the context of the environmental characterization and disentangle microbial patterns related to natural changes from those driven by the anthropic impact on this ecosystem. In spite of the complex relationships between the habitat characteristics, microbial community abundance and metabolic potential, in Syracuse Bay, the availability of organic substrates differently originated by the local conditions appeared to drive the distribution and activity of microbial assemblage. A seasonal pattern of microbial abundances was observed, with the highest concentrations of phytoplankton in spring and low values in winter, whereas heterotrophic bacteria were more abundant during the autumn period. The autumn peaks of the rates of enzymatic activities suggested that not only phytoplankton-derived but also allochthonous organic polymers strongly stimulated microbial metabolism. Increased microbial response in terms of abundance and metabolic activities was detected especially at the sites directly affected by organic matter inputs related to agriculture or aquaculture activities. Nitrogen salts such as nitrate, rather than orthophosphate, were primary drivers of phytoplankton growth. This study also provides insights on the different seasonal scenarios of water quality in Syracuse Bay, which could be helpful for management plans of this Mediterranean coastal environment.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3