Simulation Modeling of a Ship Propulsion System in Waves for Control Purposes

Author:

Acanfora Maria,Altosole Marco,Balsamo FlavioORCID,Micoli Luca,Campora Ugo

Abstract

The article deals with a simulation approach to the representation of the ship motions in waves, interacting with the propulsion system behavior (diesel engine and propeller). The final goal is the development of a simulator, as complete as possible, that allows the analysis of the main engine thermodynamics in different sea conditions, also in the unfavorable event of dynamic instability of the hull, and the correct management of the other propulsion components. This latter aspect is particularly interesting in some of the last new energy solutions for decarbonization of ships, concerning, for example, auxiliary electric motors, powered by batteries, to support the traditional diesel-mechanical propulsion (especially in heavy weather conditions). From this point of view, a proper analysis of the engine dynamic performance, affected by particular sea states, is fundamental for a smart management and control of shaft generators/auxiliary electric motors, batteries, etc. To this end, the work presents and highlights the main features of a ship simulator, suitable for the study of the new propulsion solutions that are emerging in maritime transport. Some representative results will point out the complex non-linear behavior of the propulsion plant in waves. Moreover, a parametric roll scenario will be investigated, in order to highlight the capability of the conceived simulator in modeling the effects of the dynamic instability of the hull on the propulsion plant.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference60 articles.

1. A study on situation awareness of ship maneuvering simulator training;Okazaki;Int. J. Emerg. Trends Eng. Technol.,2015

2. Numerical simulation of ship propulsion transients and full-scale validation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3