Three-Point Inverse and Forward Kinematic Algorithms for Circle Measurement from Distributed Displacement Sensor Network

Author:

Mayyas MohammadORCID

Abstract

Automatic fitting of an arc center and radius is a quality problem frequently encountered when manufacturing a mechanical component. Due to the complexity of the measurement, validating each manufactured component via inspection is not feasible or economical. This paper introduces a new validation procedure for measuring arcs from distributed sensors. The goal of this proposed measurement process is to improve measurement throughput (i.e., parts measured per unit of time) and reduce measurement errors associated with hardware and algorithms. This proposed model develops a three-point inverse kinematic algorithm (TPIK) accompanied by a calibration master to obtain the relative location of the measurement system by solving a set of six non-linear equations. This technique allows deployment of a high accuracy gauge systems that in general, reduces machine and algorithm errors. The direct fitting is validated by using mathematical, CAD, and experimental models. Furthermore, a modified definition for the roundness index is introduced based on the proposed forward and inverse algorithms. The simulations examine the roundness index in relation to the measurement precision, sampling angle, nominal radius, and part variation. A benefit of this proposed method is accurate and rapid inspection of the radii and elimination of the human error associated with part loading variation during conventional radii measurement. The rapid, accurate inspection and corresponding reduction in human error make this method an excellent process for inspection of large quantities of components.

Funder

Ohio Department of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel circle center location method for a large-scale wafer;Measurement Science and Technology;2021-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3