Author:
Guo Jianhua,Guo Zhiqi,Chu Liang,Zhao Di,Hu Jincheng,Hou Zhuoran
Abstract
Energy management strategies are vitally important to give full play to energy-saving four-wheel-drive plug-in hybrid electric vehicles (4WD PHEV). This paper proposes a novel dual-adaptive equivalent consumption minimization strategy (DA-ECMS) for the complex multi-energy system in the 4WD PHEV. In this strategy, management of the multi-energy system is optimized by introducing the categories of future driving conditions to adjust the equivalent factors and improving the adaptability and economy of driving conditions. Firstly, a self-organizing neural network (SOM) and grey wolf optimizer (GWO) are adopted to classify the driving condition categories and optimize the multi-dimensional equivalent factors offline. Secondly, SOM is adopted to identify driving condition categories and the multi-dimensional equivalent factors are matched. Finally, the DA-ECMS completes the multi-energy optimization management of the front axle multi-energy sources and the electric driving system and releases the energy-saving potential of the 4WD PHEV. Simulation results show that, compared with the rule-based strategy, the economy in the DA-ECMS is improved by 13.31%.
Funder
Changsha Automotive Innovation Research Institute Innovation Project - Research on Intelligent Trip Planning System of Pure Electric Vehicles Based on Big Data
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献